Q-DockLHM: Low-resolution refinement for ligand comparative modeling
نویسندگان
چکیده
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled receptor structures requires fast and reliable docking techniques capable of dealing with structural inaccuracies in protein models. Here, we present Q-Dock(LHM), a method for low-resolution refinement of binding poses provided by FINDSITE(LHM), a ligand homology modeling approach. We compare its performance to that of classical ligand docking approaches in ligand docking against a representative set of experimental (both holo and apo) as well as theoretically modeled receptor structures. Docking benchmarks reveal that unlike all-atom docking, Q-Dock(LHM) exhibits the desired tolerance to the receptor's structure deformation. Our results suggest that the use of an evolution-based approach to ligand homology modeling followed by fast low-resolution refinement is capable of achieving satisfactory performance in ligand-binding pose prediction with promising applicability to proteome-scale applications.
منابع مشابه
Q-Dock: Low-Resolution Refinement for Ligand Comparative Modeling
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled rec...
متن کاملRefinement of protein structures into low-resolution density maps using rosetta.
We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using bot...
متن کاملProtein Structure Refinement of CASP Target Proteins Using GNEIMO Torsional Dynamics Method
A longstanding challenge in using computational methods for protein structure prediction is the refinement of low-resolution structural models derived from comparative modeling methods into highly accurate atomistic models useful for detailed structural studies. Previously, we have developed and demonstrated the utility of the internal coordinate molecular dynamics (MD) technique, generalized N...
متن کاملAssessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors
The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptor...
متن کاملQ-Dock: Low-resolution flexible ligand docking with pocket-specific threading restraints
The rapidly growing number of theoretically predicted protein structures requires robust methods that can utilize low-quality receptor structures as targets for ligand docking. Typically, docking accuracy falls off dramatically when apo or modeled receptors are used in docking experiments. Low-resolution ligand docking techniques have been developed to deal with structural inaccuracies in predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2010